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Recent Advances in Phase Retrieval

I n many applications in science and 
engineering, one is given the modulus 
squared of the Fourier transform of an 

unknown signal and then tasked with 
solving the corresponding inverse prob-
lem, known as phase retrieval. Solu-
tions to this problem have led to some 
noteworthy accomplishments, such as 
identifying the double helix structure of 
DNA from diffraction patterns, as well 
as characterizing aberrations in the Hub-
ble Space Telescope from point spread 
functions. Recently, phase retrieval has 
found interesting connections with alge-
braic geometry, low-rank matrix recov-
ery, and compressed sensing. These 
connections, together with various new 
imaging techniques developed in optics, 
have spurred a surge of research into the 
theory, algorithms, and applications of 
phase retrieval. In this lecture note, we 
outline these recent connections and 
highlight some of the main results in 
contemporary phase retrieval.

Relevance
Phase retrieval finds applications in areas 
such as optics, X-ray crystallography, 
astronomical imaging, speech process-
ing, and computational biology. Every 
application of this inverse problem 
encounters several fundamental ques-
tions: How do we reconstruct the desired 
signal from the measurements? To what 
extent is the reconstruction unique and/

or stable? Can we develop new measure-
ment devices that allow for robust signal 
recovery? These questions form the 
basis for the notes presented below.

Prerequisites
We assume the reader has a basic 
understanding of linear algebra, optimi-
zation, and probability. Some familiari-
ty with compressed sensing is helpful 
but not necessary.

Problem statement
In standard applications of phase retrieval, 
we receive measurements of the modulus 
squared of the Fourier transform of an 
unknown signal ,x0  ,y Fx0 2=  where 
the magnitude is taken component-wise. 
(For simplicity, we 
model x0  as a vector 
in Cn  so that the Fou-
rier operator F  may 
be represented by a 
matrix.) Observe that, 
without additional 
information, this in
verse problem is ter-
ribly ill posed. For 
example, if y  is the vector of all ones, 
then x0 can be any standard basis element 
multiplied by an arbitrary phase factor. In 
general, the set of solutions can have as 
many as n  real degrees of freedom. 
Examples of these degrees of freedom 
include the so-called trivial ambiguities: 
Fz Fx2 2=  if z e xi= z  for some 

[ , ),0 2!z r  if z is a translation of ,x  or 
if z  is the conjugate reversal of .x

Example 1 
Suppose that ( , , , ) .x i2 0 0=  Then 

( , , , ) .Fx 5 9 5 12 =  Let z  be any of
( , , , ), ( , , , ),i i2 1 0 0 0 2 0-  or (0, 0, , ) .i 2-  
These are trivial ambiguities for which 

( , , , ) .Fz 5 9 5 12 =  However, trivial 
ambiguities are not the only solu-
tions. For example, ( / , ,z i5 1 2= +  

/ , )i5 1 2- -  is not a trivial ambigui-
ty, but still ( , , , ) .Fz 5 9 5 12 =

To obtain a well-posed problem, we 
must acquire additional information. 
Historically, this has been accomplished 
by imposing structure on the signal. For 
example, one might assume that x0  is 
real and has compact support. In fact, 
this uniquely determines almost every 
x0  up to trivial ambiguities when taking 

a two-dimensional 
(2-D) Fourier trans-
form [or three-di
mensional (3-D) or 
higher] [5]. However, 
unfortunately, in 1-D 
there is no unique-
ness even if the signal 
support is bounded. 
Furthermore, even in 

settings in which uniqueness is guaran-
teed, there is no known general algo-
rithm to find the unknown signal from 
its Fourier magnitude. A more recent 
class of signal structures used in phase 
retrieval relies on sparsity [4]. A vector 
is defined to be k-sparse if it has at 
most k  nonzero entries. Sparsity priors 
have been used extensively in many 
fields of engineering and statistics and 
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are known to closely approximate vari-
ous classes of images and signals.

Another way to obtain a well-posed 
problem is to collect additional intensity 
measurements. For example, in diffractive 
imaging, one may implement multiple 
structured illuminations of the form 

,FD xj 0
2  where each Dj  is a known 

diagonal matrix. In other applications, we 
can take redundant measurements via the 
short-time Fourier transform. This 
approach has been used in speech and 
audio processing, in measurements of ultra-
short laser pulses via frequency resolved 
optical gating, and in ptychographical dif-
fractive imaging, among others.

To account for the apparent multitude 
of plausible intensity measurements 
(such as structured illuminations or the 
short-time Fourier transform), we con-
sider a general phase retrieval setting in 
which we receive y Ax0 2=  for some 
known matrix .A Cm n! #  We then seek 
to solve the following program:

  , ,x Ax y x Sfind subject to 2 != � (1)

where S Cn3  corresponds to the im
posed structure. In this lecture note, 
we focus on cases where S  is either all 
of Cn  or the set of k-sparse vectors. 
For both settings, we discuss transfor-
mations A  that allow for (1) to uni
quely determine x0  and consider 
algorithms that were recently designed 
to solve (1) for various choices of .A  
The results we present throughout are 
surveyed in [6], [8], and [10], unless 
indicated otherwise.

Uniqueness
For a fixed ,A  we are interested in 
whether (1) has a “unique” solution for 
every x S0 !  (or for most ) .x S0 !  We 
focus on the cases where S is either all 
of Cn  or the set of k-sparse vectors. 
Note that in both cases, x S!  if and 
only if e x Si !z  for every [ , ),0 2!z r  
which means (1) never has a unique 
solution in the literal sense. To account 
for this technicality, we say (1) has a 
unique solution (up to a global phase 
factor) if every solution lies in the set
[ ]: : [ , ) .x e x 0 2i

0 0 !z r= z" ,

Notice that the set [ ]x0  is determined 
by the outer product x x*

0 0  (and vice 

versa). Let a*
i  denote the ith row of A 

(here, a Ci
n!  is a column vector, and a*

i  
denotes its conjugate transpose). Then

	 .y a x a x a x a x x a·* * * * *
i i i i i i0

2
0 0 0 0= = =  

� (2)

Consider the case where .S Cn=  In 
this setting, (2) implies that (1) has a 
unique solution for every x Cn0 !  
p r ec i se ly  when  the  mapp ing 

{ }x x a x x a* * *
i i i

m
0 0 0 0 17 =  is one to one. 

Recent research has investigated the 
number of measurements m  that are 
necessary or sufficient for this map 
to be one to one. For example, it has 
been shown that the inequality 

( )logm n O n4$ -  is a necessary con-
dition. Conversely, for almost every 
A Cm n! #  with ,m n4 4$ -  (1) has a 
unique solution for every .x Cn0 !  
Whether such A exist when m n4 41 -  
remains an open problem for general .n  
We know this is impossible when n has 
the form n 2 1k= +  and yet possible 
when n 4=  [11]. Alternatively, for 
almost every A Cm n! #  with ,m n2$  
(1) has a unique solution for almost 
every ,x Cn

0 !  and no such A exists 
when .m n2 11 -

In many real-world applications, A 
exhibits some sort of Fourier structure. 
For example, in the classical setting in 
which x0  is compactly supported, A 
may be viewed as an oversampled Fou-
rier matrix. As mentioned before, 1-D 
uniqueness from Fourier measurements 
cannot be guaranteed in general. To 
achieve uniqueness beyond trivial ambi-
guities, consider the model in which A 
is a kn n#  matrix composed of k  dif-
ferent n n#  blocks of the form ,FDj  
where F  is the n n#  discrete Fourier 
transform matrix and each Dj  is some 
diagonal matrix. This model is called 
the structured illumination model, and 
each Dj  is referred to as a mask. While 
four such masks are required to deter-
mine every possible x0  (by the afore-
mentioned discussion), we currently 
only know how to do so with ( )logO n  
masks. On the other hand, we do know 
how to determine almost every possible 
x0  with only two masks, which matches 
the above theory; in particular, the two 
masks may be taken to be the identity 

matrix and ( , , , ),0 1 1diag f  as illustrat-
ed in the following example.

Example 2 
Suppose that x0 is a vector of length n 4=  
and we measure it using the two masks 
D I0 =  and ( , , , ) .D D 0 1 1 1diag1 = =  
The resulting structured illumination matrix 
has the form
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r-  The two-mask 

structured illumination model measures 
the discrete Fourier transform of the 
signal and of the signal minus the first 
component (or any other desired ele-
ment). A larger dimensional example of 
this idea is given in Figure 1.

Another structured example of A is 
the short-time Fourier transform, which 
can be thought of as a special case of 
the structured illumination model: The 
diagonal entries of each Dj  come from 
a different translation of a common 
window function of width ,w  and we 
only consider every lth translation of 
this window. This particular measure-
ment model finds applications in cross-
correlation frequency-resolved optical 
gating (XFROG), in which one mea-
sures ultrafast laser pulses by optically 
producing a spectrogram; another appli-
cation is ptychography, a diffractive 
imaging method where different over-
lapping patches of the unknown object 
are measured. For the short-time Fourier 
transform model, we know that x0  is 
not uniquely determined if it has w  
consecutive zeros, but (1) does uniquely 
determine most nonvanishing signals 
when .l w n% %

Example 3
Consider the short-time Fourier trans-
form of a signal of length .n 6=  We 
choose the measurement window as a 
rectangular function of length w 3=  
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and select a step size .l 2=  The mea-
surements are then the discrete Fourier 
transforms of vectors that are equal to 
the signal of interest in the given win-
dows, and 0 elsewhere. With this choice 
of parameters, the short-time Fourier 
transform is equivalent to structured 
illumination using every other transla-
tion of ( , , , , , ) .1 1 1 0 0 0diag  The result-
ing measurement matrix has the form

( , , , , , )
( , , , , , )
( , , , , , )

.A
FD
FD
FD

F
F
F

1 1 1 0 0 0
0 0 1 1 1 0
1 0 0 0 1 1

diag
diag
diag

1

2

3

= => >H H

In the case where S  is the set of 
k-sparse signals, a simple argument 
gives that for almost every ,A Cm n! #  
Ax0  uniquely determines every 
k-sparse x0  provided m k2$  [4]. 
When the phases are discarded, the 
number of measurements increases  
by a factor of four: It can be shown  
that for almost every A Cm n! #  with
m k8 4$ - , (1) uniquely determines 
every k-sparse .x0  When k  is much 
smaller than ,n  one may wonder 
whether the classical phase retrieval 
problem [ ]Fx x0

2
07  is plausible (we 

will certainly have m n k8 4$= -  
intensity measurements, as is typi-
cally sufficient).  Unfortunately, 
trivial ambiguities are still present 
in this case, but we can nonetheless 
uniquely determine most k-sparse 
signals with ( )k O n /1 2= e-  up to trivi-
al ambiguities.

Algorithms
In this section, we describe several 
methods for solving the phase retrieval 
problem (1) in the special cases where 

S  is either all of Cn  or the set of 
k-sparse signals.

The most popular class of phase-
retrieval algorithms is based on alternat-
ing projections, pioneered by the work 
of Gerchberg and Saxton and extended 
by Fienup. These methods consist of 
iteratively imposing the constraints in 
time/space and in the Fourier domain, 
namely, consistency with the measure-
ments. Adapting to our generalized 
phase-retrieval setup, the basic steps 
consist of choosing an initial guess, and 
then alternating between projecting 
onto the sets { : }x Ax y2 =  and :S

: , : ( ),z y
Ax
Ax x P A z/

n
n

n
n S n

1 2
1%= = @
+

where y /1 2  denotes the entrywise 
square root of ,y  c denotes entry-
wise product, PS  denotes the near-
est-point projection onto ,S  and A@  
denotes the pseudoinverse of .A  
Unfortunately, convergence to the 
true solution is not guaranteed since 
the sets are not convex. In what fol-
lows, we review a few successful 
alternatives to this approach.

PhaseLift
As before, we let a*

i  denote the ith row 
of ,A  and take A  to be the function 
that maps Hermitian matrices X  to 
vectors y Rm!  such that [ ] .y i a Xa*

i i=  
It is easy to verify that A  is linear, 
and considering (2), we also have 

( )xx AxA 2=)  for every .x Cn!  As 
such, the following program is equiva-
lent to (1) when :S Cn=

	
( ) ,

, ( ) .

X X y

X X0 1

find subject to

rank

A

*

=

=
�

(3)

Discarding the rank constraint pro-
duces a convex relaxation of the phase 
retrieval problem:

( ) , .X X y X 0find subject toA *= � (4)

If this relaxation is tight (i.e., every 
solution satisfies ( ) ),X 1rank =  then the 
relaxation solves the phase retrieval 
problem. If the relaxation is not tight, 
then we might instead minimize the 
trace of X  subject to ( )X yA =  and 
X 0*  so as to encourage X  to have low 
rank. Both options are members of a 
family of convex relaxations of (3) called 
PhaseLift. An alternative relaxation, 
referred to as PhaseCut, is obtained by 
separating the measurements into an 
amplitude and phase component, and 
optimizing only the phase [12].

Amazingly, PhaseLift (4) is typically 
tight and robust to noise whenever A is 
“sufficiently random” and the number of 
measurements m is appropriately large. To 
see this, we first note that the set of com-
plex Hermitian matrices is an n2-dimen-
sional vector space over the real numbers, 
by using a basis consisting of ( ) /n n 1 2+  
real Hermitian matrices E Ejk kj+  and 
( ) /n n 1 2-  imaginary Hermitian matri

ces ( )i E Ejk kj- . Thus, every Hermitian 
X  is uniquely determined by ( ),XA  if 
{ }a a*i i i

m
1=  is a spanning set; this typically 

occurs when m n2$  and the ais are drawn 
at random. To get away with fewer mea-
surements, we leverage the fact that the so-
lution we seek satisfies .X 0*  Then, it 
can be shown that (4) is typically tight 
when ( ),m n npolylogX=  provided 
A Cm n! #  is drawn from an appropriate 
random distribution. For example, the en-
tries of A may be drawn independently 

(a) Vector x (b) Fx (c) |Fx|2 (f) |FDx|2(d) Dx (e) FDx

Figure 1. An illustration of two deterministic masks. (a) A vector x  is chosen with indices from –4 to 4. We take the Fourier transform of x  to get 
(b) and then square it to get (c). Applying the mask with a zero in the zero-indexed component, we obtain (d) a new vector .Dx  Note that the Fourier 
transform (e) and squared Fourier transform (f) of Dx  are quite different than those of .x  With the data Fx 2  and FDx 2  it is possible to recover almost 
every vector .x  Clearly, if x  already has a  zero in the zero-indexed component; then D  will apply no change to ,x  and it will not be possible to recover .x
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from a complex Gaussian distribution, 
or A may be composed of n n#  blocks 
of the form ,FDj  where F  is the n n#  
discrete Fourier transform matrix and 
Dj  is a diagonal matrix with random di-
agonal entries from an acceptable distri-
bution (the latter case models the 
structured illumination application of 
phase retrieval).

Wirtinger flow
While PhaseLift allows solving the 
phase retrieval problem in polynomial 
time (say, with an interior-point meth-
od), such methods scale poorly with 
the problem size due to the lifting oper-
ation, leading one to seek alternative 
solvers. To this end, we consider a differ-
ent program:

	 .a x yminimize *
i i

i

m
2 2

1

-
=

^ h/ � (5)

Observe that (5) is equivalent to the 
phase retrieval problem (1) when 

.S Cn=  Unfortunately, since (5) is not 
convex, we expect to encounter local 
minima when attempting to solve it. In 
addition, this particular objective func-
tion has a continuum of global opti-
mizers: The true solution x0  induces a 
circle of global optimizers [ ]x0 =

{ : [ , )} .e x 0 2i
0 !z rz  Perhaps surpris-

ingly, (5) admits a fast initialization of 
gradient descent that allows for conver-
gence to this circle provided A is suffi-
ciently random. This gradient descent 
iteration is called Wirtinger flow 
because the gradient is conveniently 
expressed in terms of Wirtinger deriv-
atives [3].

The convergence of Wirtinger flow is 
established by first showing that initial-
izations sufficiently close to [ ]x0  yield 
convergence by verifying a local convex-
ity-type property. Next, a good initializa-
tion is found. Suppose the rows { }a*i i

m
1=  

of A are complex Gaussian. Then a sim-
ple moment calculation reveals that

,
m

y a a I x x1 2E * *
i

i

m

i i
1

0 0= +
=

; E/

meaning the true solution x0  is a leading 
eigenvector of the expected matrix. Fur-
thermore, /m y a a1 *

i i ii
m

1=
/  is typically 

spectrally close to its expectation, and so 
its leading eigenvector (suitably scaled) is 
close to [ ] .x0  With this initialization, gra-
dient descent converges linearly to [ ]x0  
when ( )logm n nX=  and A has com-
plex Gaussian entries; a variant of the 
gradient descent iteration exhibits similar 
performance when ( )logm n n4X=  
and A is composed of n n#  blocks of 
the form FDj  (again, following the struc-
tured illumination model). Figure 2 
shows a comparison between the compu-
tation time required for PhaseLift and for 
Wirtinger flow.

Sparse phase retrieval
Now suppose that the unknown vector 
x0  is known to be k-sparse. If we were 
given Ax0  instead of ,Ax0 2  then we 
could leverage the now-rich theory of 
compressed sensing to reconstruct x0  
provided A is an nm#  random matrix 
with ( );m k npolylogX=  see [1] for a 
short introduction to this theory. We 
aspire to reconstruct [ ]x0  from Ax0 2  
with similar requirements on A. We 
discuss two algorithms along these 
lines but note that their perfor
mance is strictly worse than the desired

( ) .m k npolylogX=  Indeed, achieving 
this performance with complex Gaussian 
or sufficiently random matrices A 
remains an open problem.

In compressed sensing, one of the 
most popular reconstruction algorithms 
given Ax y0 =  minimizes x 1  subject 
to Ax y=  [4]. In phase retrieval, we 
receive linear measurements of ,x x*

0 0  
and since x x*

0 0  is sparse, it makes sense 
to minimize X 1  subject to ( ) .X yA =  
We also want to encourage X  to be 
rank-1, leading to the following variation 
of PhaseLift:

	
[ ]

( ) , .

X X

X y X 0

minimize Tr

subject toA
1

*

m+

=
�

(6)

If the entries of A  are complex 
Gaussian, then for an appropriate 
choice of ,m  (6) typically recovers 
X x x*0 0=  provided ( ) .logm k n2X=  
Drawing from compressed sensing-
based intuition, the k2 here comes from 
the fact that x x*

0 0  is k2-sparse, and so 
the barrier to improving this sample 
complexity is perhaps an artifact of the 
lifting approach.

Following the motivation of Wirtinger 
flow, we seek a faster alternative to this 
semidefinite program. Let us reformu-
late (1) in the case where S  is the set of 
k-sparse vectors:

	
( )

.

a x y

x k

minimize

subject to

*

i

m

i i
1

2 2

0 #

-
=

/
�

(7)

Here, x 0  denotes the number of 
nonzero entries in ;x  note the similarity 
to (5). When { }ai i

m
1=  are complex Gauss-

ian, the solution to (7) typically 
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Figure 2. The runtime comparison between 
PhaseLift (blue), Wirtinger flow (orange), and 
least squares (purple) assuming the known 
phase. For each dimension { , , },n 2 21 9f!  we 
perform 20 iterations of the following experiment: 
Draw a . n n4 5 #  matrix A  with independ-
ent entries with complex Gaussian distribution 

( , / ) ( , / )i0 1 2 0 1 2N N+  and a signal ,x Cn!  
also with independent and identically distributed 
complex Gaussian entries. Compute z Ax=  
and .y z 2=  Then reconstruct x  from z  
by MATLAB’s built-in implementation of least 
squares, and reconstruct x  from y  up to global 
phase using Wirtinger flow and PhaseLift. (For 
PhaseLift, we solve the semidefinite program 
using TFOCS v1.3 release 2 [2]; the runtime was 
prohibitively long for .)n 252  After conducting 
all 20 iterations, we plot the average runtime along 
with error bars that illustrate one standard devia-
tion. As expected, the least-squares solver (which 
enjoys a phase “oracle”) is faster than the phase 
retrieval solvers. For larger dimensions, Wirtinger 
flow appears to be about 100 times slower than 
least-squares, whereas PhaseLift is even slower.
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reconstructs the true solution x0 provided 
( ( / ) ),log logm k n k kX=  and further-

more, the reconstruction is robust to noise. 
To solve this program, 
we may apply an algo-
rithm called Greedy 
Sparse Phase Retrieval 
(GESPAR), which 
iteratively improves a 
guess { , , }K n1 f3  
of the support of .x0  
For each guess, the 
objective function 
reduces to an instance 
of (5). Therefore, 
GESPAR optimizes 
locally to produce an 
estimate x  such that 

( ) ,x Ksupp 3  and then updates K  by 
swapping the member of K  that contrib-
utes least to x with the index outside of 
K  that contributes most to the (negative) 
gradient of the objective function. This 
iteration terminates when the swap fails 
to produce an improvement. See [9] for 
an implementation of GESPAR. In prac-
tice, GESPAR is prone to  local minima, 
and so one must attempt multiple trials 
with different initializations before suc-
ceeding.  Still, GESPAR is much fast-
er than the semidefinite programming 
alternative, and it empirically performs 
well when ( );m k3X=  for compari-
son, the Fienup-type alternative is about 
twice as fast, but only performs well 
when m  is much larger. Recently, 
GESPAR has been used to solve phase 
retrieval problems in coherent diffrac-
tion imaging and in ankylography.

Conclusions
There have been several interesting 
developments in phase retrieval over the 
past decade from both the optics and 
signal processing communities. We dis-
cussed various settings in which signals 
are uniquely determined by intensity 
measurements, as well as new algo-
rithms for reconstructing signals from 
such measurements. Understanding 
conditions under which recovery from 
Fourier phase retrieval measurements is 
possible, as well as developing practical 
measurement systems from which the 
signal can be recovered efficiently are 

some of the important directions for 
future research. We believe that this 
field will continue to grow and have a 

significant impact on 
optical imaging.
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Understanding conditions 
under which recovery from 
Fourier phase retrieval 
measurements is possible, 
as well as developing 
practical measurement 
systems from which the 
signal can be recovered 
efficiently are some of the 
important directions for 
future research.




